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ABSTRACT

Described herein is the first example of an organocatalytic approach for acylanion addition to the anomeric carbon of 2-nitroglucal using an
N-heterocyclic carbene catalyst. Control over the reaction conditions gives β-selective and nitro-eliminatedC-glycosides, providing opportunities
to produce new classes of C-glycoside.

Due to the fact thatC-glycosides showattractive utility as
potential drug candidates, their importance has grown over
the years.1 Therefore, the search for newmethodologies for
the expedient synthesis ofC-glycosides has become of great
interest to researchers. The development of new types of
C-glycoside integratedwith various heterocycles has gained
much attention in recent times.2 The potential pharmaceu-
tical significance of this class of compounds has prompted
various groups to develop different methodologies for
C-glycosylation, including Lewis acid,3a metal-mediated,3b

radical,3c and base-mediated glycosylation.3d

Recently, our group has actively investigated efficient
and stereoselective C-glycosylation techniques, such as

Lewisacidmediatedglycosylation,4aPd-catalyzeddecarboxy-
lative glycosylation,4b enol-triflate coupling glycosylation,4c

and glycosidations based upon sulfur ylide cycloaddition
reactions4d and sequential Rh-catalyzed aziridination/In-
mediated Barbier allylation.4e In addition to these meth-
odologies, we substantiated the importance of C-glycosides
by demonstrating the high activities of certain C-glycosides
toward biological systems.5

Some time ago, Schmidt, Vanker, and other groups
devised a base-mediated glycosylation technique that used
2-nitroglucal derivatives.6 Since 2-nitroglucal is a versatile
Michael-type glycosyl donor under basic conditions, we
envisioned that NHC catalyzed acylanion addition to
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2-nitroglucal would afford a new class of C-glycosides.
Our initial study commenced with the reaction of pyr-
idine-2-carboxaldehyde (1 equiv) and tri-O-benzyl-2-ni-
tro-D-glucal (7a, 1.3 equiv) using various NHC catalysts
(A�F, 0.1 equiv) and 0.1 equiv of DBU in dichloro-
methane (0.05M) at rt (Table 1, entries 1�6).Weobserved
that only thiazolium salts B and E led to the formation of
two products, namely, the Stetter typeβ-selectiveC-glyco-
side 1b and the subsequent base-mediated nitro-eliminat-
ed7 C-glycoside 1c (entries 2 and 5). The reactions with
other precatalysts including triazolium saltsD and imida-
zolium saltsA,C, Fwere found to be unsuccessful. To our
delight, precatalyst E led to the formation of C-glycoside
products 1b and 1c in yields of 10% and 59% respectively
(entry 5) which prompted us to further investigate the con-
ditions used in this reaction. The scope of this optimized
reaction was subsequently explored by varying the cata-
lyst and base loadings as well as subjecting the reaction to
different bases. Employing precatalyst E (0.1 equiv), the

scope of this transformation was evaluated with various
bases (0.1 equiv) (Et3N, DIPEA, Cs2CO3) (entries 7�9) at
rt using dichloromethane as solvent. Compound 1b was
formed as the major product in a yield of 62% (entry 8)
when DIPEA was used as the base (0.1 equiv) in CH2Cl2.
Glycoside 1c was formed in 68% yield when Cs2CO3

was used as the base in CH2Cl2 (entry 9). Therefore, we
expanded our optimization studies for each glycoside,
1b and 1c. The increased loading of Cs2CO3 to 2 equiv
under the same reaction conditions led to compound 1c in
a yield of 87%(entry 10). To favor product 1c, we fixed the
conditions to 2 equiv (<2 equiv provides a minor amount
of 1b) of Cs2CO3 and 0.1 equiv of precatalyst E and then
screened the various organic solvents (entries 11�13). The
results showed that the reaction in dichloromethane pro-
duced the highest yield of 87% (entry 10). TheC-glycoside
1b was somewhat sensitive to basic conditions due to
elimination of the nitro group to form 1c. Indeed, usage
of 2 equiv of DIPEA produced 1c in a reasonable yield
along with 10�20% of 1b as a minor product, which was
not found in the case of Cs2CO3. This prompted us to use
DIPEA as a base to obtain Stetter type β-selective C-
glycoside 1b. Earlier, it was found that 0.1 equiv of
DIPEA produced an optimal yield of 62% (entry 8). To
avoid the conversion of compound 1b to 1c, the catalyst
loading was increased to 0.15 equiv to trap any unused
DIPEA (0.1 equiv); further, various solvents were screen-
ed to selectively obtain 1b (entries 14�17). Similarly, the
best result for obtention of 1b resulted when dichloro-
methane was employed as the solvent, producing it in a
yield of 77% along with small amounts of compound 1c

(5% yield) (entry 14).
The optimized conditions for the formation of 1b

involve the employment of 0.15 equiv of precatalyst E
in the presence of 0.1 equiv ofDIPEA in dichloromethane
(0.05M) and stirring at rt for 24 h (entry 14). On the other
hand, the conditions for formation of the nitro-elimi-
nated product 1c involve employment of 0.1 equiv of
precatalyst E in the presence of 2 equiv of Cs2CO3 in
dichloromethane (0.05 M), at rt for 24 h (entry 10). With
these optimized reaction conditions in hand, we began to
explore the substrate scope (Figures 1 and 2).8a At the
outset of this study, a few examples of N-containing
heteroaromatic aldehydes and 3,4,6-tri-O-benzyl-2-
nitro-D-glucal were subjected to the Stetter type β-selective
C-glycosidation (Figure 1), as we found that 2-formyl-
N-containing heterocycles were competent substrates
with good to moderate yields obtained for 2-quinoline
(2b, 89%), 6-methyl-2-pyridine (3b, 82%), 6-hydroxy-
methyl-2-pyridine (4b, 75%), and 8-formylquinoline
(5b, 75%). The formation of 4b indicates that the reac-
tion occurred specifically with the aldehyde functional
group even in the presence of a hydroxymethyl group,

Table 1. Optimization of NHC Catalyzed C-Glycosylation

entrya
catalyst

(equiv)

base

(equiv)

solvent

(0.05 M)

yieldb

1b

(%)

yieldb

1c

(%)

1 A (0.1) DBU (0.1) CH2Cl2 � �
2 B (0.1) DBU (0.1) CH2Cl2 5 52

3 C (0.1) DBU (0.1) CH2Cl2 � �
4 D (0.1) DBU (0.1) CH2Cl2 � �
5 E (0.1) DBU (0.1) CH2Cl2 10 59

6 F (0.1) DBU (0.1) CH2Cl2 � �
7 E (0.1) Et3N (0.1) CH2Cl2 15 63

8 E (0.1) DIPEA (0.1) CH2Cl2 62 18

9 E (0.1) Cs2CO3 (0.1) CH2Cl2 20 68

10 E (0.1) Cs2CO3 (2) CH2Cl2 � 87

11 E (0.1) Cs2CO3 (2) CH3CN � 65

12 E (0.1) Cs2CO3 (2) THF � 52

13 E (0.1) Cs2CO3 (2) dioxane � 70

14 E (0.15) DIPEA (0.1) CH2Cl2 77 5

15 E (0.15) DIPEA (0.1) CH3CN 30 20

16 E (0.15) DIPEA (0.1) THF 32 15

17 E (0.15) DIPEA (0.1) toluene 20 10

aUnless otherwise noted, all of the reactions were carried out using
freshly distilled dry solvent at rt for 24 h. bYield of isolated product.
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which proves thatC-glycosylation is more facile thanO-
glycosylation. Concurrently, different sugars such as
benzyl protected 2-nitro-D-galactal (6b, 84%), methyl
protected 2-nitro-D-glucal (7b, 78%), and 3,4-di-O-ben-
zyl-2-nitro-L-rhamnal (8b, 82%) also showed good
yields. The base-mediated nitro-eliminated glycoside is
a new class of C-glycoside, in contrast to a Michael
addition type C-glycoside, which allows one to develop
more diverse types of C-glycoside including various
heteroaromatic, aromatic, and aliphatic aldehydes
(Figure 2).

Pyridines with formyl groups at C-2, C-3, and C-4
(1c�3c) were screened, and the results showed that good
to moderate yields were obtained (72�87%). 6-Methyl-
2-pyridine (4c, 74%) and 6-hydroxymethyl-2-pyridine
(5c, 83%) afforded the nitro-eliminated C-glycosides in
good yield. By using 2.5 equiv of 2-nitroglucal (7a), a
dimeric glucal typeC-glycoside 6cwas produced inwhich
two sugars were linked by 2,6-pyridinedicarboxalde-
hyde; it was formed in 74% yield. Next, we investigated
the possibility of preparing C-glycosides from commer-
cially available quinoline sources with formyl groups at
C-2, C-3, and C-8. The reaction proceeded smoothly
with yields of 74�79% (7c�9c). 2-Formylthiophene
was also observed to give a moderate yield (64%) of
product 10c.
Subsequently, the reaction scope was investigated on

2-nitro-tri-O-benzyl-D-galactal (11c), 2-nitrodihydropyran
(12c), and 2-nitro-di-O-benzyl-L-rhamnal (16c), and all
were found to be viable substrates. Similarly, the re-
action scope was evaluated with different protecting
groups on the 2-nitroglucal (13c�15c), and it was found
that a long chain alkyl substituent showed a moderate

yield of 67%while the rest showed good yields (84�86%).
This organocatalyticC-glycosylation protocolwas further
extended to aliphatic aldehydes such as butyraldehyde
and acetaldehyde (17c and 18c), and the corresponding
C-glycosides were obtained in moderate yields of 72%
and 74% respectively. Various benzaldehyde derivatives
were employed as glycosyl acceptors, and they produced
moderate yields of the product (52�69%). However,
4-bromobenzaldehyde was able to achieve a good yield
(23c, 87%). Finally, this reaction pattern was applied to
disaccharide 18a and a moderate yield was obtained for
24c (Scheme 1, 69%) showing that this glycosylation is

Figure 1. Scope of Stetter type β-selectiveC-glycosides.8a (a) For
the enitre figure, unless otherwise noted all the reactions were
carried out under standard optimized conditions. (b) Isolated
yields are recorded above.

Figure 2. Scope of nitro-eliminated C-glycosides.8a (a) For the
enitre figure, unless otherwise noted all the reactions were
carried out under standard optimized condition. (b) Isolated
yields are recorded above. (c) 2.5 equiv of tri-O-benzyl-2-nitro-
D-glucal was used.

Scheme 1. C-Glycosylation on Disaccharide
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tolerant to a wide range of substrates. All the products were
well characterized,8a and the structures of 2b and 8c were
confirmed by X-ray crystallography8b (Figures 3 and 4).

The possible catalytic cycle for this reaction is depicted
in Scheme 2. Presumably, the reaction proceeds through
the nucleophilic addition of carbene to aldehyde (I), form-
ing the Breslow intermediate II, which then attacks the
more favored 5H4 conformation (III) of 7a to form IV,
which thenundergoes a proton shift followedbyNHCejec-
tion to formC-glycoside 1b. The Schmidt group3d explain-
ed that 2-nitroglucal may favor the 5H4 conformation as
opposed to the 4H5 conformation due to the allylic strain.
This would favor the acyl anion preferentially adding from
the β-side of III.
In conclusion, we have developed a new method for an

organocatalytic C-glycosidation, which is the first exam-
ple of acylanion equivalent addition to the anomeric car-
bon of sugars.
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Figure 3. X-ray structure of compound 2b.

Figure 4. X-ray structure of compound 8c.

Scheme 2. Plausible Reaction Mechanism


